4.1 Introduction

By reanalyzing grammatical categories feature structures, we were able to codify the relatedness of syntactic categories and to express the property of headedness via a general principle: the Head Feature Principle. The grammar of the preceding chapter not only provides a more compact way to represent syntactic information, it also systematically encodes the fact that phrases of different types exhibit parallel structures. In particular, the rules we gave in the previous chapter suggest that lexical head daughters in English uniformly occur at the left edge of their phrases.\(^1\) Of course, VPs and PPs are consistently head-initial. In addition, assuming our analysis of NPs includes the intermediate-level category NOM, nouns are initial in the phrases they head, as well. The Chapter 3 grammar thus expresses a correct generalization about English phrases.

One motivation for revising our current analysis, however, is that our rules are still not maximally general. We have three distinct rules introducing lexical heads, one for each of the three COMPS values. This would not necessarily be a problem, except that, as noted in Chapter 2, these three valences are far from the only possible environments lexical heads may require. Consider the examples in (1):

(1) a. Pat relies on Kim.
   b. *Pat relies.
   c. The child put the toy on the table.
   d. *The child put the toy.
   e. The teacher became angry with the students.
   f. *The teacher became.
   g. The jury believed the witness lied.

Examples (1a,b) show that some verbs require a following PP; (1c,d) show that some verbs must be followed by both an NP and a PP; (1e,f) show a verb that can be followed by a kind of phrase we have not yet discussed, called an adjective phrase (AP); and (1g) shows a verb that can be followed by an S. We say only that became can be followed by an AP and that believed can be followed by an S, because they can also appear in sentences like *Pat became an astronaut and Pat believed the story, in which they are

\(^1\)This is not true in some other languages, e.g. in Japanese, the lexical head daughters are phrase-final, resulting in SOV (Subject-Object-Verb) ordering, as well as noun-final NPs.
followed by NPs. In fact, it is extremely common for verbs to be able to appear in multiple environments. Similarly, (2) shows that *ate*, like many other English verbs, can be used either transitively or intransitively:

(2) The guests ate (the cheese).

Facts like these show that the number of values of COMPS must be far greater than three. Hence, the Chapter 3 grammar would have to be augmented by many more grammar rules in order to accommodate the full range of verbal subcategories. In addition, given the way COMPS values are keyed to rules, a worrisome redundancy would arise: the lexical distinctions would all be encoded twice – once in the phrase structure rules and once in the (many) new values of COMPS that would be required.

Exercise 1: More Subcategories of Verb
There are other subcategories of verb, taking different combinations of complements than those illustrated so far. Think of examples of as many as you can. In particular, look for verbs followed by each of the following sequences: NP-S, NP-AP, PP-S, and PP-PP.

Intuitively, we would like to have one rule that simply says that a phrase (a VP, in the cases above) may consist of a lexical head (a V, in these cases) followed by whatever other phrases the lexical head requires. We could then relegate to the lexicon (and only to the lexicon) the task of specifying for each word what elements must appear together with that word. In this chapter, we develop a way to do just this. It involves enriching our conception of valence features (SPR and COMPS) in a way somewhat analogous to what we did with grammatical categories in the previous chapter. The new conception of the valence features not only allows for more general rules, but also leads to a reduction of unnecessary structure in our trees and to improvements in our analysis of agreement phenomena.

4.2 Complements
4.2.1 Syntactic and Semantic Aspects of Valence
Before we begin the discussion of this analysis, let us consider briefly the status of the kinds of co-occurrence restrictions we have been talking about. It has sometimes been argued that the number and type of complements a verb takes is fully determined by its meaning. For example, the verb *disappear* is used to describe events involving a single entity (expressed by its subject); *deny*’s semantics involves events with two participants, one typically human and the other a proposition; and an event described by *hand* must include three participants: the person who does the handing, the thing handed, and the recipient of the transaction. Correspondingly, *disappear* takes no complements, only a subject; *deny* takes a subject and a complement, which may be either an NP (as in The defendant denied the charges) or an S (as in The defendant denied he was guilty); and *hand* takes a subject and two NP complements (or one NP and one PP complement).

It is undeniable that the semantics of a verb is intimately related to its valence. There is, however, a certain amount of syntactic arbitrariness to it, as well. For example, the
words *eat*, *dine*, and *devour* all denote activities necessarily involving both a consumer of food and the food itself. Hence, if a word’s valence were fully determined by its meanings, one might expect that all three would be simple transitives, requiring a subject and an NP complement (that is, a direct object). But this expectation would be wrong – *dine* is intransitive, *devour* is obligatorily transitive, and (as noted above), *eat* can be used intransitively or transitively:

(3) a. The guests devoured the meal.
   b. *The guests devoured.
   c. *The guests dined the meal.
   d. The guests dined.
   e. The guests ate the meal.
   f. The guests ate.

Thus, though we recognize that there is an important link between meaning and valence, we will continue to specify valence syntactically. We will say more about the connection between meaning and valence – and more generally about the syntax-semantics interface – in later chapters.

4.2.2 The COMPS Feature

In the Chapter 3 grammar, the lexical entry for a verb like *deny* would specify that it is `[COMPS str]`. This ensures that it can only appear in word structures whose mother node is specified as `[COMPS str]`, and such word structures can be used to build larger structures only by using the rule of our grammar that introduces an immediately following NP. Hence, *deny* has to be followed by an NP. As noted above, the co-occurrence effects of complement selection are dealt with by positing both a new COMPS value and a new grammar rule for each co-occurrence pattern.

How can we eliminate the redundancy of such a system? An alternative approach to complement selection is to use features directly in licensing complements – that is, to have a feature whose value specifies what the complements must be. We will now make this intuitive idea explicit. First, recall that in the last chapter we allowed some features (e.g. HEAD, AGR) to take values that are feature structures themselves. If we treat COMPS as such a feature, we can allow its value to state directly what the word’s complement must be. The value of COMPS for *deny* can simply be an NP, as shown in (4):

\[
(4) \quad \left[ \begin{array}{c}
\text{COMPS} \\
\text{HEAD} \\
\text{SPR} +
\end{array} \right]
\]

and in abbreviated form in (5):  

\[
(5) \quad \left[ \begin{array}{c}
\text{COMPS} \\
\text{NP}
\end{array} \right]
\]

Similarly, we can indicate that a verb takes another type of complement: *rely*, *become*, and *believe*, for example, can take COMPS values of PP, AP, and S, respectively. Optional

\[\underline{\text{Soon, we will consider the other possible environment for *deny*, namely the one where it is followed by a clause.}}\]
complements, such as the object of *eat* can be indicated using parentheses; that is, the lexical entry for *eat* can specify \([\text{COMPS \ (NP)}]\). Likewise, we can indicate alternative choices for complements using the vertical bar notation introduced in the discussion of regular expressions in Chapter 2. So the entry for *deny* or *believe* includes the specification: \([\text{COMPS NP | S \}].\)

Of course there is a problem with this proposal: it does not cover verbs like *hand* and *put* that require more than one complement. But it’s not hard to invent a straightforward way of modifying this analysis to let it encompass multiple complements. Instead of treating the value of COMPS as a single feature structure, we will let it be a list of feature structures.\(^3\) Intuitively, the list specifies a sequence of categories corresponding to the complements that the word combines with. So, for example, the COMPS values for *deny*, *become*, and *eat* will be lists of length one. For *hand*, the COMPS value will be a list of length two, namely \(\text{(NP , NP \}}.\) For verbs taking no complements, like *disappear*, the value of COMPS will be \(\text{( )}\) (a list of length zero). This will enable the rules we write to ensure that a tree containing a verb will be well-formed only if the sisters of the V-node can be identified with the categories specified on the list of the verb. For example, *rely* will only be allowed in trees where the VP dominates a V and a PP.

Now we can collapse all the different rules for expanding a phrase into a lexical head \((H)\) and other material. We can just say:

\[(6) \text{ Head-Complement Rule} \]

\[
\begin{align*}
\text{phrase} & \quad \text{VAL} \quad [\text{COMPS \ ( )]} \\
\text{word} & \quad \text{VAL} \quad [\text{COMPS \ (\, , \, , \, )]} \\
\quad & \quad [\quad \, \, , \quad]
\end{align*}
\]

The tags in this rule enforce identity between the non-head daughters and the elements of the COMPS list of the head. The \([\quad , \quad , \quad , \quad ]\) notation allows this rule to account for phrases with a variable number of non-head daughters. \(n\) stands for any integer greater than or equal to 1. Thus, if a word is specified lexically as \([\text{COMPS \ ( AP \}]}\), it must co-occur with exactly one AP complement; if it is \([\text{COMPS \ ( NP , NP \}]}\), it must co-occur with exactly two NP complements, and so forth. Finally, the mother of any structure licensed by (6), which we will call a head-complement phrase, must be specified as \([\text{COMPS \ ( )]}\), because that mother must satisfy the description on the left-hand side of the rule.\(^4\)

In short, the COMPS list of a lexical entry specifies a word’s co-occurrence requirements; and the COMPS list of a phrasal node is empty. So, in particular, a V must have sisters that match all the feature structures in its COMPS value, and the VP that it heads has the empty list as its COMPS value and hence cannot combine with complements. The Head-Complement Rule, as stated, requires all complements to be realized as sisters of the lexical head.\(^5\)

\(^3\)Recall that we used this same technique to deal with multiple founders of organizations in our feature-structure model of universities presented at the beginning of Chapter 3.

\(^4\)Note that by underspecifying the complements introduced by this rule – not even requiring them to be phrases, for example – we are implicitly leaving open the possibility that some complements will be nonphrasal. This will become important below and in the analysis of negation presented in Chapter 13.

\(^5\)This flat structure appears well motivated for English, but our general theory would allow us to write a Head-Complement Rule for some other language that allows some of the complements to be introduced higher in the tree structure. For example, structures like the one in (i) would be allowed by a version of the Head-Complement Rule that required neither that the head daughter be of type *word*
If you think in terms of building the tree bottom-up, starting with the verb as head, then the verb has certain demands that have to be satisfied before a complete, or ‘saturated’, constituent is formed. On this conception, the complements can be thought of as being ‘cancelled off’ of the head daughter’s COMPS list in the process of building a headed phrase. We illustrate this with the VP put the flowers in a vase: the verb put requires both a direct object NP and a PP complement, so its COMPS value is \( \langle \text{NP}, \text{PP} \rangle \). The requisite NP and PP will both be sisters of the V, as in (7), as all three combine to form a VP, i.e. a verbal phrase whose complement requirements have been fulfilled:

As is evident from this example, we assume that the elements in the value of COMPS occur in the same order as they appear in the sentence. We will continue to make this assumption, though ultimately a more sophisticated treatment of linear ordering of phrases in sentences may be necessary.

nor that the mother have an empty COMPS list:

(i) Tree Licensed by a Hypothetical Alternative Head-Complement Rule:

Such grammatical variations might be regarded as ‘parameters’ that are set differently in particular languages. That is, it may be that all languages manifest the Head-Complement Rule, but there are minor differences in the way languages incorporate the rule into their grammar. The order of the head and the complements is another possible parameter of variation.


4.2.3 Complements vs. Modifiers

A common source of confusion is the fact that some kinds of constituents, notably PPs, can function either as complements or as modifiers. This often raises the question of how to analyze a particular PP: should it be treated as a complement, licensed by a PP on the COMPS list of a nearby word, or should it be analyzed as a modifier, introduced by a different grammar rule? Some cases are clear. For example, we know that a PP is a complement when the choice of preposition is idiosyncratically restricted by another word, such as the verb *rely*, which requires a PP headed by *on* or *upon*:

(8) a. We relied on/upon Leslie.
   b. *We relied over/with/on top of/above Leslie.

In fact, PPs that are obligatorily selected by a head (e.g. the directional PP required by *put*) can safely be treated as complements, as we will assume that modifiers are always optional.

Conversely, there are certain kinds of PP that seem to be able to co-occur with almost any kind of verb, such as temporal or locative PPs, and these are almost always analyzed as modifiers. Another property of this kind of PP is that they can iterate: that is, where you can get one, you can get many:

(9) a. We celebrated in the streets.
   b. We celebrated in the streets in the rain on Tuesday in the morning.

The underlying intuition here is that complements refer to the essential participants in the situation that the sentence describes, whereas modifiers serve to further refine the description of that situation. This is not a precisely defined distinction, and there are problems with trying to make it into a formal criterion. Consequently, there are difficult borderline cases that syntacticians disagree about. Nevertheless, there is considerable agreement that the distinction between complements and modifiers is a real one that should be reflected in a formal theory of grammar.

4.2.4 Complements of Non-verbal Heads

Returning to our analysis of complements, notice that although we have motivated our treatment of complements entirely in terms of verbs and verb phrases, we have formulated our analysis to be more general. In particular, our grammar of head-complement structures allows adjectives, nouns, and prepositions to take complements of various types. The following examples suggest that, like verbs, these kinds of words exhibit a range of valence possibilities:

(10) Adjectives
   a. The children are happy.
   b. The children are happy with the ice cream.
   c. The children are happy that they have ice cream.
   d. *The children are happy of ice cream.
   e. *The children are fond.
   f. *The children are fond with the ice cream.
   g. *The children are fond that they have ice cream.
   h. The children are fond of ice cream.
(11) Nouns
   a. A magazine appeared on the newsstands.
   b. A magazine about crime appeared on the newsstands.
   c. *Newsweek appeared on the newsstands.
   d. Newsweek about crime appeared on the newsstands.
   e. The report surprised many people.
   f. The report that crime was declining surprised many people.
   g. The book surprised many people.
   h. *The book that crime was declining surprised many people.

(12) Prepositions
   a. The storm arrived after the picnic.
   b. The storm arrived after we ate lunch.
   c. The storm arrived during the picnic.
   d. *The storm arrived during we ate lunch.
   e. *The storm arrived while the picnic.
   f. The storm arrived while we ate lunch.

The Head-Complement Rule can license APs, PPs, and NPs in addition to VPs. As with the VPs, it will license only those complements that the head A, P or N is seeking. This is illustrated for adjectives in (13): the complement PP, tagged [4], is precisely what the head adjective’s COMPS list requires:

(13)

Exercise 2: COMPS Values of Non-Verbal Heads
Based on the examples above, write out the COMPS values for the lexical entries of happy, magazine, Newsweek, report, book, after, during, and while.
4.3 Specifiers

Co-occurrence restrictions are not limited to complements. As we have noted in earlier chapters, certain verb forms appear with only certain types of subjects. In particular, in the present tense, English subjects and verbs must agree in number. Likewise, as we saw in Problem 3 of Chapter 3, certain determiners co-occur only with nouns of a particular number:

(14) a. This dog barked.
    b.*This dogs barked.
    c.*These dog barked.
    d. These dogs barked.

Moreover, some determiners co-occur only with ‘mass’ nouns (e.g. furniture, footwear, information), and others only with ‘count’ nouns (e.g. chair, shoe, fact), as illustrated in (15):

(15) a. Much furniture was broken.
    b.*A furniture was broken.
    c.*Much chair was broken.
    d. A chair was broken.

We can handle such co-occurrence restrictions in much the same way that we dealt with the requirements that heads impose on their complements. To do so, we will reinterpret the feature SPR in the same way we reinterpreted the feature COMPS. Later in this chapter (see Sections 4.6.1 and 4.6.2), we’ll see how we can use these features to handle facts like those in (14)–(15).

Recall that in Chapter 3, we used the term specifier to refer to both subjects and determiners. We will now propose to collapse our two earlier head-specifier rules into one grammar rule that will be used to build both Ss and NPs. In the Chapter 3 grammar, the feature SPR takes atomic values (+ or −) and records whether or not the phrase contains a specifier. On analogy with the feature COMPS, the feature SPR will now take a list as its value. The lexical entry for a verb (such as sleep, deny, or hand) will include the following specification:

(16) [. SPR ⟨ NP ⟩]

Likewise, the lexical entry for a noun like book, meal, or gift will include the following specification:

(17) [. SPR ⟨ [HEAD det] ⟩]

The decision to treat the value of SPR as a list may strike some readers as odd, since sentences only have a single subject and NPs never have more than one determiner. But notice that it allows the feature SPR to continue to serve roughly the function it served in the Chapter 3 grammar, namely recording whether the specifier requirement of a phrase is satisfied. Indeed, making SPR list-valued provides a uniform way of formulating the

---

6More precisely, whether or not a given phrase has satisfied any needs it might have to combine with a specifier. Recall that proper nouns are also [SPR +] in the Chapter 3 grammar.
idea that a particular valence requirement is unfulfilled (the valence feature – COMPS or SPR – has a nonempty value) or else is fulfilled (the value of the valence feature is the empty list).

We can now redefine the category NOM in terms of the following feature structure descriptions:7

\[(18)\]
\[
\text{NOM} = \begin{bmatrix}
\text{HEAD} & \text{noun} \\
\text{VAL} & \begin{bmatrix}
\text{COMPS} & \langle \text{ } \rangle \\
\text{SPR} & \langle X \text{ } \rangle
\end{bmatrix}
\end{bmatrix}
\]

And once again there is a family resemblance between our interpretation of NOM and the description abbreviated by VP, which is now as shown in (19):

\[(19)\]
\[
\text{VP} = \begin{bmatrix}
\text{HEAD} & \text{verb} \\
\text{VAL} & \begin{bmatrix}
\text{COMPS} & \langle \text{ } \rangle \\
\text{SPR} & \langle X \text{ } \rangle
\end{bmatrix}
\end{bmatrix}
\]

Both (18) and (19) have empty COMPS lists and a single element in their SPR lists. Both are intermediate between categories with nonempty COMPS lists and saturated expressions – that is, expressions whose COMPS and SPR lists are both empty.

Similarly, we can introduce a verbal category that is analogous in all relevant respects to the saturated category NP. This verbal category is the feature structure analog of the familiar category S:

\[(20)\]
\[
\text{NP} = \begin{bmatrix}
\text{HEAD} & \text{noun} \\
\text{VAL} & \begin{bmatrix}
\text{COMPS} & \langle \text{ } \rangle \\
\text{SPR} & \langle \text{ } \rangle
\end{bmatrix}
\end{bmatrix}
\]

\[
\text{S} = \begin{bmatrix}
\text{HEAD} & \text{verb} \\
\text{VAL} & \begin{bmatrix}
\text{COMPS} & \langle \text{ } \rangle \\
\text{SPR} & \langle \text{ } \rangle
\end{bmatrix}
\end{bmatrix}
\]

Note crucially that our abbreviations for NOM, VP, NP and S no longer mention the type phrase. Since these are the constructs we will use to formulate rules and lexical entries in this chapter (and the rest of the book), we are in effect shifting to a perspective where phrasality has a much smaller role to play in syntax. The binary distinction between words and phrases is largely replaced by a more nuanced notion of ‘degree of saturation’ of an expression – that is, the degree to which the elements specified in the head’s valence features are present in the expression. As we will see in a moment, there is a payoff from this perspective in terms of simpler phrase structure trees.

Because NP and S now have a parallel formulation in terms of feature structures and parallel constituent structures, we may collapse our old rules for expanding these categories (given in (21)) into a single rule, shown in (22):

---

7The specification [SPR ( X )] represents a SPR list with exactly one element on it. The ‘X’ is used to represent a completely underspecified feature structure. In the case of a NOM, this element will always be [HEAD det], but it would be redundant to state this in the definition of the abbreviation.
(21) Head-Specifier Rules from the Chapter Three Grammar:

a. \[
\begin{align*}
\text{phrase} \quad \begin{bmatrix}
\text{VAL} \quad \text{COMPS \; itr} \\
\text{SPR} \quad +
\end{bmatrix} & \rightarrow \quad \begin{bmatrix}
\text{NP} \\
\text{HEAD} \quad \text{AGR} \quad h
\end{bmatrix} \quad \text{H} \quad \begin{bmatrix}
\text{phrase} \\
\text{VERB} \quad \text{AGR} \quad i
\end{bmatrix} \\
\text{VAL} \quad \text{SPR} \quad + & \quad \text{#} & \quad \text{3}
\end{align*}
\]

b. \[
\begin{align*}
\text{phrase} \quad \begin{bmatrix}
\text{VAL} \quad \text{COMPS \; itr} \\
\text{SPR} \quad +
\end{bmatrix} & \rightarrow \quad \begin{bmatrix}
\text{D} \\
\text{HEAD} \quad \text{noun}
\end{bmatrix} \quad \text{H} \quad \begin{bmatrix}
\text{phrase} \\
\text{VAL} \quad \text{SPR} \quad -
\end{bmatrix}
\end{align*}
\]

(22) Head-Specifier Rule (Version I)

\[
\begin{align*}
\text{phrase} \quad \begin{bmatrix}
\text{VAL} \quad \text{COMPS} \quad \{ \; \} \\
\text{SPR} \quad \{ \; \}
\end{bmatrix} & \rightarrow \quad \begin{bmatrix}
\text{word} \\
\text{VAL} \quad \text{COMPS} \quad \{ \; \}
\end{bmatrix} \quad \text{H} \quad \begin{bmatrix}
\text{VAL} \quad \text{SPR} \quad \{ \; \}
\end{bmatrix}
\end{align*}
\]

The tag in this rule identifies the SPR requirement of the head daughter with the non-head daughter. If the head daughter is ‘seeking’ an NP specifier (i.e. is specified as \([\text{SPR} \; \{\; \text{NP} \;\}])\), then the non-head daughter will be an NP. If the head daughter is ‘seeking’ a determiner specifier, then the non-head daughter will be \([\text{HEAD} \; \text{det}]\). Phrases licensed by (22) will be known as head-specifier phrases.

We said earlier that the lexical entries for nouns and verbs indicate what kind of specifier they require. However, the head-daughter of a head-specifier phrase need not be a word. For example, in the sentence Kim likes books, the head daughter of the head-specifier phrase will be the phrase likes books. Recall that the head-complement rules in the Chapter 3 grammar all required that mother and the head daughter be specified as \([\text{SPR} \; \{\; \}])\). In our current grammar, however, we need to ensure that the particular kind of specifier selected by the head daughter in a head-complement phrase is also selected by the head-complement phrase itself (so that a VP combines only with an NP and a NOM combines only with a determiner). We must somehow guarantee that the SPR value of a head-complement phrase is the same as the SPR value of its head daughter. We might thus add a stipulation to this effect, as shown in (23):

(23) Head-Complement Rule (Temporary Revision)

\[
\begin{align*}
\text{phrase} \quad \begin{bmatrix}
\text{VAL} \quad \text{SPR} \quad \{ \; \}
\end{bmatrix} & \rightarrow \quad \begin{bmatrix}
\text{word} \\
\text{VAL} \quad \text{SPR} \quad \{ \; \}
\end{bmatrix} \quad \text{H} \quad \begin{bmatrix}
\text{VAL} \quad \text{COMPS} \quad \{ \; \}
\end{bmatrix} \quad \text{\#} \quad \text{4} \quad \text{\ldots} \quad \text{\#} \quad \text{4}
\end{align*}
\]

\[\text{At first glance, one might be tempted to accomplish this by making SPR a head feature, but in that case the statement of the HFP would have to be complicated, to allow rule (22) to introduce a discrepancy between the HEAD value of a mother and its head daughter.}\]

\[\text{This version of the Head-Complement Rule should be considered a temporary revision, as we will soon find a more general way to incorporate this constraint into the grammar.}\]
(Note that here we are using the tag A to designate neither an atomic value nor a feature structure, but rather a list of feature structures.\textsuperscript{10})

4.4 Applying the Rules

Now that we have working versions of both the Head-Specifier and Head-Complement Rules, let’s use them to construct a tree for a simple example. These rules build the tree in (26) for the sentence in (24) from the lexical entries in (25):\textsuperscript{11}

(24) Alex likes the opera.

(25) a. \[
\langle \text{likes }, \text{verb} \rangle
\]
\[
\text{HEAD } \langle \text{SPR } \langle \text{NP} \rangle \rangle
\]
\[
\text{VAL } \langle \text{COMPS } \langle \text{NP} \rangle \rangle
\]

b. \[
\langle \text{Alex }, \text{noun} \rangle
\]
\[
\text{HEAD } \langle \text{SPR } \langle \rangle \rangle
\]
\[
\text{VAL } \langle \text{COMPS } \langle \rangle \rangle
\]

c. \[
\langle \text{the }, \text{det} \rangle
\]
\[
\text{HEAD } \langle \text{SPR } \langle \rangle \rangle
\]
\[
\text{VAL } \langle \text{COMPS } \langle \rangle \rangle
\]

d. \[
\langle \text{opera }, \text{noun} \rangle
\]
\[
\text{HEAD } \langle \text{SPR } \langle \text{D} \rangle \rangle
\]
\[
\text{VAL } \langle \text{COMPS } \langle \rangle \rangle
\]

\textsuperscript{10}We will henceforth adopt the convention of using numbers to tag feature structures or atomic values and letters to tag lists of feature structures.

\textsuperscript{11}For the purposes of this example, we are ignoring the problem of subject-verb agreement. It will be taken up below in Section 4.6.1.
There are several things to notice about this tree:

First, compared to the trees generated by the Chapter 3 grammar, it has a simpler constituent structure. In particular, it has no non-branching nodes (except those immediately dominating the actual words). The Head-Specifier Rule requires that its head daughter be \([\text{COMPS } ( )]\), but there are two ways that this could come about. The head daughter could be a word that is \([\text{COMPS } ( )]\) to start with, like \textit{opera}; or it could be a phrase licensed by the Head-Complement Rule, like \textit{likes the opera}. This phrase is \([\text{COMPS } ( )]\) according to the definition of the Head-Complement Rule. In brief, the head daughter of the Head-Specifier Rule can be either a \textit{word} or a \textit{phrase}, as long as it is \([\text{COMPS } ( )]\).

Similarly, the verb \textit{likes} requires an NP complement and an NP specifier. Of course, the symbol NP (and similarly D) is just an abbreviation for a feature structure description, namely that shown in (20). Once again, we see that the type (\textit{word} or \textit{phrase}) of the expression isn’t specified, only the HEAD, SPR and COMPS values. Thus any nominal expression that is saturated (i.e. has no unfulfilled valence features) can serve as the specifier or complement of \textit{likes}, regardless of whether it’s saturated because it started out that way (like \textit{Alex}) or because it ‘has already found’ the specifier it selected lexically (as in \textit{the opera}).
This is an advantage of the Chapter 4 grammar over the Chapter 3 grammar: the non-branching nodes in the trees licensed by the Chapter 3 grammar constitute unmotivated extra structure. As noted above, this structural simplification is a direct consequence of our decision to continue specifying things in terms of NP, NOM, S and VP, while changing the interpretation of these symbols. However, we will continue to use the symbols N and V as abbreviations for the following feature structure descriptions:

\[
N = \begin{bmatrix}
\text{word} \\
\text{HEAD} \\
\text{noun}
\end{bmatrix} \quad V = \begin{bmatrix}
\text{word} \\
\text{HEAD} \\
\text{verb}
\end{bmatrix}
\]

This means that in some cases, two abbreviations may apply to the same node. For instance, the node above Alex in (26) may be abbreviated as either NP or N. Similarly, the node above opera may be abbreviated as either NOM or N. This ambiguity is not problematic, as the abbreviations have no theoretical status in our grammar: they are merely there for expository convenience.

Another important thing to notice is that the rules are written so that head-complement phrases are embedded within head-specifier phrases, and not vice versa. The key constraint here is the specification on the Head-Complement Rule that the head daughter must be of type word. Since the mother of the Head-Specifier Rule is of type phrase, a head-specifier phrase can never serve as the head daughter of a head-complement phrase.

A final thing to notice about the tree is that in any given phrase, one item is the head and it selects for its sisters. That is, Alex is the specifier of likes the opera (and also of likes), and likes is not the specifier or complement of anything.

Exercise 3: Which Rules Where?
Which subtrees of (26) are licensed by the Head-Complement Rule and which are licensed by the Head-Specifier Rule?

4.5 The Valence Principle
Recall that in order to get the SPR selection information from a lexical head like likes or story to the (phrasal) VP or NOM that it heads, we had to add a stipulation to the Head-Complement Rule. More stipulations are needed if we consider additional rules. In particular, recall the rule for introducing PP modifiers, discussed in the previous chapter. Because no complements or specifiers are introduced by this rule, we do not want any cancellation from either of the head daughter’s valence features to take place. Hence, we would need to complicate the rule so as to transmit values for both valence features up from the head daughter to the mother, as shown in (28):

\[
\begin{bmatrix}
\text{phrase} \\
\text{VAL} \\
\text{SPR} \\
\text{COMPS}
\end{bmatrix} \quad \rightarrow \quad \text{H} \begin{bmatrix}
\text{VAL} \\
\text{SPR} \\
\text{COMPS}
\end{bmatrix} \quad \text{PP}
\]

(28) Head-Modifier Rule (Version I)
Without some such requirement, the combination of a modifier and a VP wouldn’t be constrained to be a VP rather than, say, an S. Similarly, a modifier could combine with an S to build a VP. It is time to contemplate a more general theory of how the valence features behave in headed phrases.

The intuitive idea behind the features SPR and COMPS is quite straightforward: certain lexical entries specify what they can co-occur with by listing the particular kinds of dependents they select. We formulated general rules stating that all the head’s COMPS members are ‘discharged’ in a head-complement phrase and that the item in the SPR value is discharged in a head-specifier phrase. But to make these rules work, we had to add constraints preserving valence specifications in all other instances: the mother in the Head-Specifier Rule preserves the head’s COMPS value (the empty list); the mother in the Head-Complement Rule preserves the head’s SPR value, and the mother in the Head-Modifier Rule must preserve both the COMPS value and the SPR value of the head. The generalization that can be factored out of our rules is expressed as the following principle which, like the HFP, constrains the set of trees that are licensed by our grammar rules:

\[(29) \text{ The Valence Principle} \]

Unless the rule says otherwise, the mother’s values for the VAL features (SPR and COMPS) are identical to those of the head daughter.

By ‘unless the rule says otherwise’, we mean simply that the Valence Principle is enforced unless a particular grammar rule specifies both the mother’s and the head daughter’s value for some valence feature.

The effect of the Valence Principle is that: (1) the appropriate elements mentioned in particular rules are canceled from the relevant valence specifications of the head daughter in head-complement or head-specifier phrases, and (2) all other valence specifications are simply passed up from head daughter to mother. Once we factor these constraints out of our headed rules and put them into a single principle, it again becomes possible to simplify our grammar rules. This is illustrated in (30):

\[(30) \begin{align*} &a. \text{ Head-Specifier Rule (Near-Final Version)} \\
&\quad \begin{bmatrix} \text{phrase} \\
&\quad \text{VAL} \begin{bmatrix} \text{SPR} \{\} \end{bmatrix} \end{bmatrix} \rightarrow \Box \begin{bmatrix} \text{HVAL} \begin{bmatrix} \text{SPR} \{\} \end{bmatrix} \end{bmatrix} \end{align*} \\
&b. \text{ Head-Complement Rule (Final Version)} \\
&\quad \begin{bmatrix} \text{phrase} \\
&\quad \text{VAL} \begin{bmatrix} \text{COMPS} \{\} \end{bmatrix} \end{bmatrix} \rightarrow \begin{bmatrix} \text{word} \\
&\quad \text{HVAL} \begin{bmatrix} \text{COMPS} \{\} \end{bmatrix} \end{bmatrix} \Box \ldots \Box \\
&c. \text{ Head-Modifier Rule (Version II)} \\
&\quad \begin{bmatrix} \text{phrase} \end{bmatrix} \rightarrow \begin{bmatrix} \text{HVAL} \begin{bmatrix} \text{COMPS} \{\} \end{bmatrix} \end{bmatrix} \text{PP} \end{align*} \]

While the simplicity of the rules as formulated in (30) is striking, our work is not yet done. We will make further modifications to the Head-Modifier Rule in the next chapter and again in Chapter 14. The Head-Specifier Rule will receive some minor revision in Chapter 14 as well. While the Head-Complement Rule is now its final form, we will be introducing further principles that the rules interact with in later chapters.
4.6 Agreement Revisited

Let us now return to the problem of agreement. Our earlier analysis assigned the feature AGR to both nouns and verbs, and one of our grammar rules stipulated that the AGR values of VPs and their subjects had to match. In addition, as we saw in Problem 3 of Chapter 3, determiner-noun agreement is quite similar and could be treated by a similar stipulation on a different grammar rule. These two rules are now collapsed into our Head-Specifier Rule and so we could consider maintaining essentially the same rule-based analysis of agreement in this chapter’s grammar.

However, there is a problem with this approach. There are other constructions, illustrated in (31), that we will also want to analyze as head-specifier phrases:

(31) a. They want/preferred [them \textit{arrested}].
    b. We want/preferred [them \textit{on} our team].
    c. With [them \textit{on} our team], we’ll be sure to win.
    d. With [my parents as \textit{supportive} as they are], I’ll be in fine shape.

Clauses like the bracketed expressions in (31a,b) are referred to as \textit{small clauses}; the constructions illustrated in (31c,d) are often called \textit{absolute} constructions. The problem here is that the italicized prepositions and adjectives that head these head-specifier phrases are not compatible with the feature AGR, which is defined only for the parts of speech \textit{det}, \textit{noun}, and \textit{verb}. Nor would there be any independent reason to let English prepositions and adjectives bear AGR specifications, as they have no inflectional forms and participate in no agreement relations. Hence, if we are to unify the account of these head-specifier phrases, we cannot place any general constraint on them which makes reference to AGR.

There is another approach to agreement that avoids this difficulty. Suppose we posit a lexical constraint on verbs and common nouns that requires their AGR value and the AGR value of the specifier they select to be identical. This constraint could be formulated as in (32):

(32) Specifier-Head Agreement Constraint (SHAC)

\[ \text{Verbs and common nouns must be specified as:} \]
\[ \text{HEAD} \quad \begin{bmatrix} \text{AGR} & \Box \end{bmatrix} \]
\[ \text{VAL} \quad \begin{bmatrix} \text{SPR} & \langle \begin{bmatrix} \text{AGR} & \Box \end{bmatrix} \rangle \end{bmatrix} \]

This formulation does not specify precisely what the SHAC’s formal status in the grammar is. This will be rectified in Chapter 8. We introduce it here so that we can move subject-verb agreement and determiner-noun agreement out of the grammar rules and into the lexicon, without having to stipulate the agreement separately in the lexical entry of every verb and common noun. The formalization in Chapter 8 has the desired effect of avoiding the unwanted redundancy by locating specifier-head agreement in one place in the grammar.
4.6.1 Subject-Verb Agreement

This proposal can accommodate the facts of subject-verb agreement without difficulty. A verb like *walks* has a lexical entry like the one shown in (33):

(33) walks:

\[
\begin{array}{c}
\text{HEAD} \\
\text{AGR} \quad [\text{PER 3rd}] \\
\text{VAL} \\
\text{SPR} \quad [\text{NUM sg}] \\
\end{array}
\]

Given entries like (33), the Head-Specifier Rule in (30a) above will induce agreement, simply by identifying the head daughter’s SPR value with the specifier daughter. An NP like (34) is a compatible specifier for (33), but an NP like (35) is not:

(34) Kim:

\[
\begin{array}{c}
\text{HEAD} \\
\text{AGR} \quad [\text{PER 3rd}] \\
\text{VAL} \\
\text{SPR} \quad () \\
\end{array}
\]

(35) we:

\[
\begin{array}{c}
\text{HEAD} \\
\text{AGR} \quad [\text{PER 1st}] \\
\text{VAL} \\
\text{SPR} \quad () \\
\end{array}
\]

This lexicalized approach to subject-verb agreement will account for the familiar contrasts like (36):


b. *We walks.

As before, the HFP will transmit agreement constraints down to the head noun of a subject NP, accounting for the pattern illustrated in (37):

(37) a. The child walks.


At the same time, since the Head-Specifier Rule now makes no mention of AGR, it may also be used to construct small clauses (as in (31a, b)) and absolute constructions (as in (31c, d)), whose head daughters can be APs or PPs that are incompatible with AGR.\[^{12}\]

---

\[^{12}\]The details of the grammar of small clauses and absolute constructions, however, are beyond the scope of this textbook.
Let us now examine subject-verb agreement more closely. First, recall that English agreement depends on person, as well as number. We have analyzed person in terms of varying specifications for the feature PER. [PER 1st] is our notation for first person, that is, the pronouns I and we. [PER 2nd] denotes second person, which in English is always you. [PER 3rd] covers all nonpronominal NPs, as well as he, she, it, and they. Most present tense English verbs have one form when their subjects are third-person singular (namely a form ending in -s) and another form covering all other persons and numbers. The only verb whose present tense system makes finer distinctions than this is be, which has a special first-person singular form, am, a third-person singular form, is, and an additional form are (appropriate wherever am and is are not).

The generalization we would like to capture is this: although there are six different combinations of person and number in English, the vast majority of English verbs group these six possibilities into two sets – third person singular and other. This distinction can be incorporated into our grammar via the type hierarchy. Suppose we introduce two types called 3sing and non-3sing, both immediate subtypes of the type agr-cat.

Instances of the type 3sing obey the constraint shown in (38):

\[(38)\]

\[
\text{3sing} : \begin{bmatrix}
\text{PER} & 3rd \\
\text{NUM} & sg
\end{bmatrix}
\]

The subtypes of non-3sing will be constrained to have other combinations of PER and NUM values. One possible organization of these subtypes (and the one we will adopt) is shown in (39):

\[(39)\]

\[
\text{non-3sing} \\
\quad \text{1sing} \quad \text{non-1sing} \\
\quad \text{2sing} \quad \text{plural}
\]

The types 1sing, 2sing, and plural bear the constraints shown in (40):

\[(40)\]

\[
\text{1sing} : \begin{bmatrix}
\text{PER} & 1st \\
\text{NUM} & sg
\end{bmatrix}
\]

\[
\text{2sing} : \begin{bmatrix}
\text{PER} & 2nd \\
\text{NUM} & sg
\end{bmatrix}
\]

\[
\text{plural} : \begin{bmatrix}
\text{NUM} & pl
\end{bmatrix}
\]

The types 3sing and non-3sing are motivated by the co-occurrence of verbs and nouns, however, there is actually independent evidence for the type distinction. Recall that one function of the type hierarchy is to allow us to state which features are appropriate for each type of linguistic object. While PER and NUM are appropriate for both 3sing and non-3sing (and will therefore be declared on the supertype agr-cat), the feature GEND(ER) is only appropriate to 3sing: GEND (with values masc, fem, and neut) will serve to differentiate among he, she, and it, him, her, and it, and himself, herself, and
There is no motivation in English for assigning GEND to anything other than words that are third-person and singular.

With the addition of GEND, the full set of possible AGR values is as shown in (41):

(41) Possible AGR Values

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1sing</td>
<td>2sing</td>
<td></td>
</tr>
<tr>
<td>PER 1st</td>
<td>PER 2nd</td>
<td></td>
</tr>
<tr>
<td>NUM sg</td>
<td>NUM sg</td>
<td></td>
</tr>
<tr>
<td>plural</td>
<td>plural</td>
<td>plural</td>
</tr>
<tr>
<td>PER 1st</td>
<td>PER 2nd</td>
<td>PER 3rd</td>
</tr>
<tr>
<td>NUM pl</td>
<td>NUM pl</td>
<td>NUM pl</td>
</tr>
<tr>
<td>3sing</td>
<td>3sing</td>
<td>3sing</td>
</tr>
<tr>
<td>PER 3rd</td>
<td>PER 3rd</td>
<td>PER 3rd</td>
</tr>
<tr>
<td>NUM sg</td>
<td>NUM sg</td>
<td>NUM sg</td>
</tr>
<tr>
<td>GEND fem</td>
<td>GEND masc</td>
<td>GEND neut</td>
</tr>
</tbody>
</table>

Observe the absence of GEND on the non-3sing types.

This treatment of the AGR values of nouns and NPs leads to a (minor) simplification in the lexical entries for nouns and verbs. The third-person singular proper noun Kim and the present-tense verb form walks will now have lexical entries like the following:

(42) a. 

\[
\begin{align*}
\text{Kim} & : \\
\text{Head} & : \text{noun} \\
\text{AGR} & : 3\text{sing} \\
\text{COMPS} & : \{\} \\
\text{SPR} & : \{\} \\
\end{align*}
\]

b. 

\[
\begin{align*}
\text{walks} & : \\
\text{Head} & : \text{verb} \\
\text{AGR} & : 3\text{sing} \\
\text{SPR} & : \{\text{NP}\} \\
\end{align*}
\]

Lexical entries like (42b) are further subject to the SHAC, as described above.

On the other hand, we can use a single lexical entry for all the other present tense uses of a given verb. It is often assumed that it is necessary to posit separate lexical entries for present tense verb forms that take plural subjects and those that take singular, non-third-person subjects, as sketched in (43a,b):

(43) a. 

\[
\begin{align*}
\text{walk} & : \\
\text{Head} & : \text{verb} \\
\text{AGR} & : \text{NUM pl} \\
\text{SPR} & : \{\text{NP}\} \\
\end{align*}
\]
b. \[
\begin{array}{c}
\text{HEAD} \quad \text{verb} \\
\text{AGR} \quad \text{PER} \quad 1\text{st} \mid 2\text{nd} \\
\text{VAL} \quad \text{SPR} \quad \langle \text{NP} \rangle
\end{array}
\]

But such an analysis would fail to explain the fact that the former type of verb would always be identical in form to the latter: again, a suspicious loss of generalization in the lexicon.

Once we bifurcate the types of AGR values, as described above, this problem disappears. We need only a single kind of verb subsuming both (43a) and (43b), one that includes the following lexical information:

\[
\begin{array}{c}
\text{HEAD} \quad \text{AGR} \quad \text{non-3sing}
\end{array}
\]

Because of the SHAC, verbs so specified project VPs that take subjects whose head nouns must bear \textit{non-3sing} AGR values, and these, as described above, must either be first-person singular, second-person singular, or plural.

The disjunctions needed for describing classes of verbs are thus given by the type hierarchy, not by writing arbitrarily disjunctive lexical entries. In fact, one of the goals of a grammar that uses types is to predict in this manner which disjunctions play a significant role in the grammatical analysis of a given language (or of language in general).

---

**Exercise 4: The AGR Values of \textit{am} and \textit{are}**

What would be the AGR values in the lexical entries for \textit{am} and \textit{are}?  

---

### 4.6.2 Determiner-Noun Agreement

We have just seen how our new analysis of specifiers, taken together with the Specifier-Head Agreement Constraint and the Head Feature Principle, provides an account of the fact that a third-person singular verb form (e.g. \textit{walks}) takes a subject NP headed by a third-person singular noun. But, as we have already seen, the specifiers of the phrases projected from these nouns also agree in number. Recall from Problem 3 of Chapter 3 that English has determiners like \textit{this} and \textit{a}, which only appear with singular nouns, plural determiners like \textit{these} and \textit{few}, which only appear with plural nouns, and other determiners like \textit{the}, which go either way:

\[
\begin{array}{c}
\text{a. This dog barked.} \\
\text{b.*This dogs barked.} \\
\text{c. A dog barked.} \\
\text{d.*A dogs barked.}
\end{array}
\]

\[
\begin{array}{c}
\text{a.*These dog barked.} \\
\text{b. These dogs barked.}
\end{array}
\]
c. *Few dog barked.
  d. Few dogs barked.

(47) a. The dog barked.
    b. The dogs barked.

There is systematic number agreement between heads and specifiers within the NP.

We will assume that common nouns are lexically specified as shown in (48):

\[(48) \quad \text{SPR} \langle \text{[HEAD det]} \rangle\]

Hence, by the SHAC, whatever constraints we place on the AGR value of common nouns
will also apply to the determiners they co-occur with. Determiner-noun agreement, like
subject-verb agreement, is a lexical fact about nouns. This account makes crucial use of
our hypothesis (discussed in detail in Chapter 3) that determiners and nouns both bear
AGR specifications, as illustrated in (49):

\[(49) \quad \text{person, boat, a, this: } \left[ \text{AGR } 3\text{sing} \right] \]

\[\begin{align*}
\text{people, boats, few, these: } & \left[ \text{AGR } [\text{PER } 3\text{rd}] \right] \\
\text{the: } & \left[ \text{AGR } [\text{PER } 3\text{rd}] \right]
\end{align*}\]

These lexical specifications, taken together with the SHAC and the HFP, provide a
complete account of the agreement data in (45)–(47) above.

4.6.3 Count and Mass Revisited (COUNT)

In Section 4.4 above, we also observed that some determiners are restricted to occur only
with ‘mass’ nouns (e.g. furniture), and others only with ‘count’ nouns (e.g. chair):

\[(50) \quad a. \quad \text{Much furniture was broken.} \\
    b. *A furniture was broken. \\
    c. *Much chair was broken. \\
    d. A chair was broken.\]

The co-occurrence restriction illustrated in (50) – that is, the count noun/mass noun
distinction – might, of course, be solely a semantic matter. In order to give it a semantic
analysis, we would need to find a solid semantic criterion that would relate the meaning
of any given noun to its classification according to the distributional facts. Indeed, many
mass nouns (such as air, water, sand, and information) do seem to have a lot in common
semantically. However, the distributional class of mass nouns also contains words like
furniture and succotash.\(^\text{14}\) These words tend to resist semantic characterizations that
\[^{13}\text{Since we identify the whole AGR values, we are actually analyzing determiners and nouns as agreeing}
\text{in both person and number. This analysis makes different predictions from an analysis that just identified}
\text{the NUM values. It might for example allow a proper treatment of NPs like you philosophers or us linguists,}
\text{assuming that pronouns lead a second life as determiners.}\]
\[^{14}\text{a dish of cooked lima beans and corn}\]
work for the other members of the class. For example, no matter how you divide up a quantity of water, the smaller portions are still water. The same is more or less true for air, sand, and information, but not true for furniture and succotash. Any semantic analysis that doesn’t extend to all members of the distributional class ‘mass nouns’ will need to be supplemented with a purely syntactic analysis of the (semantically) oddball cases.

In the absence of a complete semantic analysis, we will analyze the data in (50) syntactically by introducing a feature COUNT. Certain determiners (e.g. a and few) will be lexically specified as [COUNT +] and others (e.g. much) will be lexically treated as [COUNT −], on the basis of which nouns they co-occur with. Still other determiners, such as the, will be lexically unmarked for this feature, because they co-occur with both kinds of nouns. The SPR value of a count noun like chair would then be (D[COUNT +]), forcing such nouns to co-occur with a count determiner. And the SPR value of a mass noun like furniture would be (D[COUNT −]).

Notice that, in contrast to AGR, COUNT is a feature only of determiners. What we might informally refer to as a ‘count noun’ (like dog) is actually one whose SPR value contains a [COUNT +] determiner. This information is not passed up to the NP node that dominates the noun. Since a verb’s SPR value specifies what kind of NP it takes as its subject, only information that appears on the NP node can be selected. Consequently, our analysis predicts that no English verb requires a count (or mass) subject (or object). To the best of our knowledge, this prediction is correct.

4.6.4 Summary

In this section, we have considered two kinds of agreement: subject-verb agreement and determiner-noun agreement. In both cases, we have analyzed the agreement in terms of the SPR requirement of the head (verb or noun). Once we take into account the effects of the SHAC, our analysis includes the following lexical entries:

(51) a. $\langle \text{word} \rangle$

<table>
<thead>
<tr>
<th>HEAD</th>
<th>AGR</th>
<th>[ ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAL</td>
<td>SPR</td>
<td>COMPS</td>
</tr>
<tr>
<td>[ noun ]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[ det ]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We postpone discussion of the optionality of determiners until Chapter 8.
b.

\[
\begin{array}{c}
\text{word} \\
\text{HEAD} \\
\text{VERB} \\
\text{AGR} \\
\text{SPR} \\
\text{VAL} \\
\text{COMPS} \\
\end{array}
\]

\[
\begin{array}{c}
\text{noun} \\
\text{HEAD} \\
\text{AGR} \\
\text{SPR} \\
\text{VAL} \\
\text{COMPS} \\
\end{array}
\]

\[
\begin{array}{c}
\text{word} \\
\text{HEAD} \\
\text{DET} \\
\text{SPR} \\
\text{VAL} \\
\text{COMPS} \\
\end{array}
\]

\[
\begin{array}{c}
\text{noun} \\
\text{HEAD} \\
\text{AGR} \\
\text{SPR} \\
\text{VAL} \\
\text{COMPS} \\
\end{array}
\]

We have designed the architecture of our feature structures and the way they interact with our general principles to have specific empirical consequences. The parallel distribution of the feature AGR in the noun and verb feature structures above reflects the fact that both verbs and nouns agree with their specifiers. In the sentence *The dog walks*, the AGR value on the noun *dog* will pass up to the NP that it heads, and that NP then has to satisfy the specifier requirement of the verb *walks*. Nouns play a dual role in agreement: as the head of the specifier in subject-verb agreement, and as the head with which the specifier must agree in determiner-noun agreement.\(^{16}\)

The picture we now have of head-specifier structures is summarized in (52).

\(^{16}\)Notice that verbs also pass up their AGR specification to the VP and S phrases they project. Hence, our analysis predicts that this information about the subject NP of a sentence is locally accessible at those higher levels of structure and could be selected for or agreed with higher in the tree. This view might well be supported by the existence of verb agreement in ‘tag questions’:

(i) He is leaving, isn’t he?
(ii) *He is leaving, isn’t she?*
(iii) *He is leaving, aren’t they?*
(iv) They are leaving, aren’t they?
(v) *They are leaving, isn’t she?*

Once again, such issues are beyond the scope of this textbook. For more on tag questions, see Bender and Flickinger 1999.
There are several things to notice about this tree:

- The HEAD value of the noun *dog* (4) and that of the phrase above it are identical in virtue of the HFP.

- Similarly, the HFP guarantees that the HEAD value of the verb *walks* (0) and that of the phrase above it are identical.

- The SHAC guarantees that the AGR value of the verb (3) is identical to that of the NP it selects as a specifier (1).

- The SHAC also guarantees that the AGR value of the noun (3) is identical to that of the determiner it selects as a specifier (2).

- Since the AGR of the noun specification is within the noun’s HEAD value 4, it follows from the interaction of the SHAC and the HFP that the AGR values of the NP, N, and D in (52) are all identical.
This means in turn that whenever a verb selects a certain kind of subject NP (an \[AGR 3\text{sing}\] NP in the case of the verb walks in (52)), that selection will restrict what kind of noun and (indirectly, through the noun’s own selectional restrictions) what kind of determiner can occur within the subject NP, as desired.

4.7 Coordination and Agreement

The coordination rule from the Chapter 3 grammar, repeated here as (53), identifies the entire expression of the mother with the expressions of the conjunct daughters:

(53) Coordination Rule (Chapter 3 version):

\[
\Box \rightarrow \Box^+ \left[ \text{word} \right]_{\text{HEAD}}^{\text{conj}} \Box
\]

Together with our analysis of agreement, this rule makes some incorrect predictions. For example, it wrongly predicts that the examples in (54) should be ungrammatical, since the conjunct daughters have differing AGR values:

(54) a. I walk and Dana runs.
    b. Two cats and one dog live there.

Exercise 5: AGR in Coordination

Using abbreviations like NP, S and VP, draw the tree the grammar should assign to (54a). What are the AGR values of the S nodes dominating I walk and Dana runs? Where do they come from?

These data show that requiring complete identity of feature values between the conjuncts is too strong. In fact, the problem of determining exactly which information must be shared by the conjuncts and the mother in coordinate structures is a very tricky one. For now, we will revise the Coordination Rule as in (55), but we will return to this rule again in Chapters 5, 8 and 14:

(55) Coordination Rule (Chapter 4 version):

\[
\Box_{\text{VAL}} \rightarrow \Box_{\text{VAL}}^+ \left[ \text{word} \right]_{\text{HEAD}}^{\text{conj}} \Box_{\text{VAL}}
\]

The Coordination Rule in (55) states that any number of constituents with the same VAL value can be coordinated to form a constituent whose mother has the same VAL value. Since AGR is in HEAD (not VAL), the rule in (55) will license the sentences in (54).

However, this rule goes a bit too far in the other direction, and now overgenerates. For example, it allows NPs and Ss to coordinate with each other:

(56)*The dog slept and the cat.

On the other hand, the overgeneration is not as bad as it might seem at first glance. In particular, for non-saturated constituents (i.e. those with non-empty SPR or COMPS values), the requirement that the SPR and COMPS values be identified goes a long way
towards ensuring that the conjuncts have the same part of speech as well. For example, a NOM like *cat* can’t be coordinated with a VP like *slept* because they have different SPR values. In Chapter 8 we will see how to constrain conjuncts to have the same part of speech without requiring identity of the whole HEAD value.

Identifying VAL values (and therefore SPR values) also makes a very nice prediction about VP versus S coordination. While Ss with different AGR values can be coordinated as in (54a), VPs with different AGR values cannot, as shown in (57):

(57)*Kim walks and run.

Another way to phrase this is that VPs with differing SPR requirements can’t be coordinated, and that is exactly how we capture this fact. Problem 9 addresses the issue of AGR values in coordinated NPs.

4.8 Case Marking

Yet another kind of selectional dependency found in many languages is the phenomenon of case marking. Case marking is a kind of variation in the form of Ns or NPs, depending on their syntactic environment. (This was addressed briefly in Problem 6 of Chapter 2.)

While many languages have case systems that involve all kinds of nouns, English has a very impoverished case system, where only pronouns show case distinctions:

(58) a. We like them.
   b. They like us.
   c. *We like they.
   d. *Us like them.
   e. Kim likes dogs.
   f. Dogs like Kim.

In these examples, the forms *we* and *they* are in the nominative case (sometimes called the subjective case), and the forms *us* and *them* are in the accusative case (sometimes called the objective case). Other languages have a larger selection of cases.

In Chapter 2, Problem 6 asked you to write phrase structure rules that would account for the different case markings associated with different positions in English. This kind of analysis of case marking no longer makes much sense, because we have replaced the very specific phrase structure rules of earlier chapters with more general rule schemas. With the theoretical machinery developed in this chapter, we handle case entirely in the lexicon, without changing our grammar rules. That is, the style of analysis we developed for agreement will work equally well for case marking. All we’ll need is a new feature CASE that takes the atomic values ‘nom’ and ‘acc’ (and others for languages with more case distinctions). Problems 5–8 concern applying the machinery to case systems in English, Icelandic, and the Australian language Wambaya, and address issues such as what kind of feature structure CASE is a feature of.

4.9 Summary

In the previous chapter, we had already seen that cross-categorial generalizations about phrase structure can be expressed in terms of schematic phrase structure rules and
categories specified in terms of feature structures. In this chapter, the real power of feature structure grammars has begun to emerge. We have begun the process of providing a unified account of the generalizations about complementation and specifier selection, in terms of the list-valued features COMPS and SPR. These features, together with the Valence Principle, have enabled us to eliminate further redundancy from our grammar rules. In fact, our grammar has now been reduced to four very general rules. In this chapter, we've also seen that key generalizations about agreement can be expressed in terms of this highly compact rule system, once we rely on categories modeled as feature structures and a single Specifier-Head Agreement Constraint. Problems 5 through 8 concern extending this style of analysis to case marking phenomena.

4.10 The Chapter 4 Grammar

4.10.1 The Type Hierarchy

(59)
### 4.10.2 Feature Declarations and Type Constraints

<table>
<thead>
<tr>
<th>TYPE</th>
<th>FEATURES/CONSTRAINTS</th>
<th>IST</th>
</tr>
</thead>
<tbody>
<tr>
<td>feat-struc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>expression</td>
<td>HEAD pos</td>
<td>feat-struc</td>
</tr>
<tr>
<td></td>
<td>VAL val-cat</td>
<td></td>
</tr>
<tr>
<td>word</td>
<td>expression</td>
<td></td>
</tr>
<tr>
<td>phrase</td>
<td>expression</td>
<td></td>
</tr>
<tr>
<td>val-cat</td>
<td>SPR list(expression)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMPS list(expression)</td>
<td></td>
</tr>
<tr>
<td>pos</td>
<td>feat-struc</td>
<td></td>
</tr>
<tr>
<td>agr-pos</td>
<td>AGR agr-cat</td>
<td>pos</td>
</tr>
<tr>
<td>verb</td>
<td>AUX {+, −}</td>
<td>agr-pos</td>
</tr>
<tr>
<td>noun</td>
<td>CASE {nom, acc}</td>
<td>agr-pos</td>
</tr>
<tr>
<td>det</td>
<td>COUNT {+, −}</td>
<td>agr-pos</td>
</tr>
<tr>
<td>adj, prep, conj</td>
<td></td>
<td>pos</td>
</tr>
<tr>
<td>agr-cat</td>
<td>PER {1st, 2nd, 3rd}</td>
<td>feat-struc</td>
</tr>
<tr>
<td></td>
<td>NUM {sg, pl}</td>
<td></td>
</tr>
<tr>
<td>3sing</td>
<td>PER 3rd</td>
<td>agr-cat</td>
</tr>
<tr>
<td></td>
<td>NUM sg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEND {fem, masc, neut}</td>
<td></td>
</tr>
<tr>
<td>non-3sing</td>
<td></td>
<td>agr-cat</td>
</tr>
<tr>
<td>1sing</td>
<td>PER 1st</td>
<td>non-3sing</td>
</tr>
<tr>
<td></td>
<td>NUM sg</td>
<td></td>
</tr>
<tr>
<td>non-1sing</td>
<td></td>
<td>non-3sing</td>
</tr>
<tr>
<td>2sing</td>
<td>PER 2nd</td>
<td>non-1sing</td>
</tr>
<tr>
<td></td>
<td>NUM sg</td>
<td></td>
</tr>
<tr>
<td>plural</td>
<td>NUM pl</td>
<td>non-1sing</td>
</tr>
</tbody>
</table>

---

17 The formal status of list types like this one is explicated in the Appendix to Chapter 6.
4.10.3 Abbreviations

\[
S = \begin{bmatrix} \text{HEAD} & \text{verb} \\ \text{VAL} & \text{COMPS} \langle \rangle \\ \text{SPR} & \langle \rangle \end{bmatrix}, \quad NP = \begin{bmatrix} \text{HEAD} & \text{noun} \\ \text{VAL} & \text{COMPS} \langle \rangle \\ \text{SPR} & \langle \rangle \end{bmatrix}
\]

\[
VP = \begin{bmatrix} \text{HEAD} & \text{verb} \\ \text{VAL} & \text{COMPS} \langle \rangle \\ \text{SPR} & \langle X \rangle \end{bmatrix}, \quad NOM = \begin{bmatrix} \text{HEAD} & \text{noun} \\ \text{VAL} & \text{COMPS} \langle \rangle \\ \text{SPR} & \langle X \rangle \end{bmatrix}
\]

\[
V = \begin{bmatrix} \text{word} \\ \text{HEAD} & \text{verb} \end{bmatrix}, \quad N = \begin{bmatrix} \text{word} \\ \text{HEAD} & \text{noun} \end{bmatrix}
\]

\[
D = \begin{bmatrix} \text{word} \\ \text{HEAD} & \text{det} \\ \text{VAL} & \text{COMPS} \langle \rangle \\ \text{SPR} & \langle \rangle \end{bmatrix}
\]

4.10.4 The Grammar Rules

(61) Head-Specifier Rule

\[
\begin{bmatrix} \text{phrase} \\ \text{VAL} & \text{SPR} \langle \rangle \end{bmatrix} \rightarrow \begin{bmatrix} \text{word} \\ \text{HEAD} & \text{verb} \end{bmatrix} \begin{bmatrix} \text{SPR} & \langle \text{P} \rangle \end{bmatrix} \begin{bmatrix} \text{VAL} & \text{COMPS} \langle \rangle \end{bmatrix}
\]

(62) Head-Complement Rule

\[
\begin{bmatrix} \text{phrase} \\ \text{VAL} & \text{COMPS} \langle \rangle \end{bmatrix} \rightarrow \begin{bmatrix} \text{word} \\ \text{HEAD} & \text{verb} \end{bmatrix} \begin{bmatrix} \text{COMPS} & \langle \text{P}, \ldots, \text{P} \rangle \end{bmatrix} \begin{bmatrix} \text{VAL} & \text{COMPS} \langle \rangle \end{bmatrix}
\]

(63) Head-Modifier Rule

\[
\begin{bmatrix} \text{phrase} \end{bmatrix} \rightarrow \begin{bmatrix} \text{word} \end{bmatrix} \begin{bmatrix} \text{VAL} & \text{COMPS} \langle \rangle \end{bmatrix} \begin{bmatrix} \text{PP} \end{bmatrix}
\]

(64) Coordination Rule

\[
\begin{bmatrix} \text{VAL} \text{P} \end{bmatrix} \rightarrow \begin{bmatrix} \text{VAL} \text{P} \end{bmatrix} + \begin{bmatrix} \text{HEAD} \text{conj} \end{bmatrix} \begin{bmatrix} \text{VAL} \text{P} \end{bmatrix}
\]

4.10.5 The Principles

(65) Head Feature Principle (HFP)

In any headed phrase, the HEAD value of the mother and the HEAD value of the head daughter must be identical.
(66) Valence Principle

Unless the rule says otherwise, the mother’s values for the VAL features (SPR and COMPS) are identical to those of the head daughter.

(67) Specifier-Head Agreement Constraint (SHAC)\(^{18}\)

Verbs and common nouns must be specified as:

\[
\begin{align*}
\text{HEAD} & \quad [\text{AGR } \[ \text{ } \] ] \\
\text{VAL} & \quad [\text{SPR } \langle \text{ } \rangle ] \\
\text{COMPS} & \quad [\text{ } ]
\end{align*}
\]

4.10.6 Sample Lexical Entries

(68) 

\[
\begin{align*}
\text{word} & \quad [\text{noun } \langle \text{ } \rangle ] \\
\text{HEAD} & \quad [\text{AGR } 1\text{sing} ] \\
\text{VAL} & \quad [\text{SPR } \langle \text{} \rangle ]
\end{align*}
\]

(69) 

\[
\begin{align*}
\text{word} & \quad [\text{noun } \langle \text{ } \rangle ] \\
\text{HEAD} & \quad [\text{AGR } 3\text{sing} ] \\
\text{VAL} & \quad [\text{SPR } \langle \text{ } \rangle ] \\
\text{COMPS} & \quad [\text{} ]
\end{align*}
\]

(70) 

\[
\begin{align*}
\text{word} & \quad [\text{noun } \langle \text{ } \rangle ] \\
\text{HEAD} & \quad [\text{AGR } 3\text{sing} ] \\
\text{VAL} & \quad [\text{SPR } \langle \text{ } \rangle ] \\
\text{COMPS} & \quad [\text{} ]
\end{align*}
\]

(71) 

\[
\begin{align*}
\text{word} & \quad [\text{det } \langle \text{ } \rangle ] \\
\text{HEAD} & \quad [\text{AGR } 3\text{sing} ] \\
\text{VAL} & \quad [\text{SPR } \langle \text{} \rangle ] \\
\text{COMPS} & \quad [\text{} ]
\end{align*}
\]

\(^{18}\)The SHAC is a principle for now, but once we have a more developed theory of lexical types in Chapter 8, it will be expressed as a constraint on the type inflecting-lexeme.
4.11 Further Reading

The idea of schematizing phrase structure rules across parts of speech was introduced into generative grammar by Chomsky (1970). For a variety of perspectives on grammatical agreement, see Barlow and Ferguson 1988. A helpful discussion of Icelandic case (see Problem 7) is provided by Andrews (1982). For discussion and an analysis of NP coordination, see Dalrymple and Kaplan 2000 and Sag 2003.

4.12 Problems

⚠️ Problem 1: Valence Variations

In this problem, you will be asked to write lexical entries (including HEAD, SPR, and COMPS values). You may use NP, VP, etc. as abbreviations for the feature structures on COMPS lists.

As you do this problem, keep the following points in mind: (1) In this chapter we’ve changed COMPS to be a list-valued feature, and (2) heads select for their specifier and complements (if they have any); the elements on the SPR and COMPS lists do not simultaneously select for the head.

[Hint: For the purposes of this problem, assume that adjectives and prepositions all have empty SPR lists.]